Coercive inequalities in higher-dimensional anisotropic heisenberg group

نویسندگان

چکیده

Abstract In the setting of higher-dimensional anisotropic Heisenberg group, we compute fundamental solution for sub-Laplacian, and prove Poincaré $$\beta $$ ? -Logarithmic Sobolev inequalities measures as a function this solution.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isoperimetric inequalities in the Heisenberg group and in the plane

We formulate the isoperimetric problem for the class of C2 smooth cylindrically symmetric surfaces in the Heisenberg group in terms of Legendrian foliations. The known results for the sub-Riemannian isoperimetric problem yield a new isoperimetric inequality in the plane: For any strictly convex, C2 loop γ ∈ R2, bounding a planar region ω, we have

متن کامل

Higher Dimensional Discrete Cheeger Inequalities

4 For graphs there exists a strong connection between spectral and combinatorial 5 expansion properties. This is expressed, e.g., by the discrete Cheeger inequality, the 6 lower bound of which states that λ(G) ≤ h(G), where λ(G) is the second smallest 7 eigenvalue of the Laplacian of a graph G and h(G) is the Cheeger constant measuring 8 the edge expansion of G. We are interested in generalizat...

متن کامل

Sharp constants in several inequalities on the Heisenberg group

We derive the sharp constants for the inequalities on the Heisenberg group H whose analogues on Euclidean space R are the well known Hardy-Littlewood-Sobolev inequalities. Only one special case had been known previously, due to Jerison-Lee more than twenty years ago. From these inequalities we obtain the sharp constants for their duals, which are the Sobolev inequalities for the Laplacian and c...

متن کامل

Determination of subrepresentations of the standard higher dimensional shearlet group

‎This paper is devoted to definition standard higher dimension shearlet group $ mathbb{S} = mathbb{R}^{+} times mathbb {R}^{n-1} times mathbb {R}^{n} $ and determination of square integrable subrepresentations of this group‎. ‎Also we give a characterisation of admissible vectors associated to the Hilbert spaces corresponding to each su brepresentations‎.

متن کامل

Logarithmic Sobolev Inequalities for Infinite Dimensional Hörmander Type Generators on the Heisenberg Group

Abstract. The Heisenberg group is one of the simplest sub-Riemannian settings in which we can define non-elliptic Hörmander type generators. We can then consider coercive inequalities associated to such generators. We prove that a certain class of nontrivial Gibbs measures with quadratic interaction potential on an infinite product of Heisenberg groups satisfy logarithmic Sobolev inequalities.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Analysis and Mathematical Physics

سال: 2021

ISSN: ['1664-2368', '1664-235X']

DOI: https://doi.org/10.1007/s13324-021-00609-x